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Abstract: Urban flooding is a frequent problem affecting cities all over the world. The problem is more
significant now that the climate is changing and urbanization trends are increasing. Various, physical
hydrological models such as the Environmental Protection Agency Storm Water Management Model
(EPA SWMM), MIKE URBAN-II and others, have been developed to simulate flooding events in
cities. However, they require high accuracy mapping and a simulation of the underground storm
drainage system. Sadly, this capability is usually not available for older or larger so-called megacities.
Other hydrological model types are classified in the semi-physical category, like Cellular Automata
(CA), require the incorporation of very fine resolution data. These types of data, in turn, demand
massive computer power and time for analysis. Furthermore, available forecasting systems provide
a way to determine total rainfall during extreme events, but they do not tell us what areas will be
flooded. This work introduces an urban flooding tool that couples a rainfall-runoff model with a
flood map database to expedite the alert process and estimate flooded areas. A 0.30-m Lidar Digital
Elevation Model (DEM) of the study area (in this case Manhattan, New York City) is divided into
140 sub-basins. Several flood maps for each sub-basin are generated and organized into a database.
For any forecasted extreme rainfall event, the rainfall-runoff model predicts the expected runoff

volume at different times during the storm interval. The system rapidly searches for the corresponding
flood map that delineates the expected flood area. The sensitivity analysis of parameters in the model
show that the effect of storm inlet flow head is approximately linear while the effects of the threshold
infiltration rate, the number of storm inlets, and the storm inlet flow reduction factor are non-linear.
The reduction factor variation is found to exhibit a high non-linearity variation, hence requiring
further detailed investigation.

Keywords: urban flooding; flooding map database; urban flash flood alert system; infiltration; storm
inlet flow; rainfall-runoff model; digital elevation model

1. Introduction

It is estimated that more than half of the global population currently resides in cities, and it is
expected that by the year 2050, at least 66% of the world’s population will be urban [1]. The process
of urbanization presents significant changes to the natural hydrological paths of an area. By turning
natural soil into impervious surfaces (roads, parking lots, buildings, and sidewalks), urbanization
reduces rainfall infiltration and decreases runoff time. This in turn significantly alters the peak discharge
of storm drainage from the area and usually results in flooding [2].

Hydrology 2019, 6, 56; doi:10.3390/hydrology6020056 www.mdpi.com/journal/hydrology

http://www.mdpi.com/journal/hydrology
http://www.mdpi.com
http://dx.doi.org/10.3390/hydrology6020056
http://www.mdpi.com/journal/hydrology
https://www.mdpi.com/2306-5338/6/2/56?type=check_update&version=2


Hydrology 2019, 6, 56 2 of 15

Urban flooding presents a great challenge for the management of urban water systems, not
only because it requires an interdisciplinary approach, but also because flooding in the city usually
results in significant human and/or economic losses [3]. For these reasons, urban flash flood warning
systems need to quickly forecast which streets and areas will be flooded at any instance during a severe
rainstorm. The real-time forecast of areas expected to be flooded within an urban district needs to be
quick and easily applicable enough to assist authorities in any decision-making process.

Available flash flood modeling systems can be classified into three broad categories: physical,
semi-physical and image processing. Physical systems usually couple meteorological data, overland
physical parameters, and the underground sewage flow system [4]. There are various physical models
currently available, one of them is the Penn State Urban Runoff Model (PSURM), a system that simulates
sewage pipe sizes and uses nonlinear reservoir routing systems to determine flooding. Another system,
the MIKE URBAN, was designed from water distribution networks and stormwater systems. Also, the
Distributed Routing Rainfall-runoff Model (DR3M-QUAL), a model that incorporates soil moisture,
evaporation, pervious and impervious areas amongst other parameters to determine rainfall excess [5].
Nevertheless, these models are dependent on the availability of accurate mapping or simulation of the
underground storm drainage systems. The issue is that this type of information usually does not exist,
or it is not completely digitized for older or larger cities.

Semi-physical systems like the cellular-automata (CA) approach relies on the cell computation
of a discretized space that encompasses a cell state, a time step, and a set of transition rules to other
neighboring cells [6]. There are several noteworthy and accessible to the public CA flooding systems
such as the Cellular Automata Dual-Drainage Simulation (CADDIES), which couples a series of CA
models to simulate surface and subsurface flow [7]; the LISFLOOD-FP model is another CA system
that simulates dynamic flood grid cells; the LISFLOOD-FP model also has the capability of assimilating
topological information derived from laser or radar [8]. However, the accuracy of these methods
depends on the high resolution of time steps and grid cell sizes, these conditions, in turn, require
massive CPU parallelism and computer power [6].

Any system that relies on the continuous input of real-time Closed-Circuit Television (CCTV),
satellite or radar images are referred to as image processing methods. Such information can assist in
characterizing anomalous water level fluctuations. Lo et al. 2015 for example developed an automated
remote analysis for monitoring urban floods where CCTV images are automatically monitored to
determine flooding areas [9]. In another study, Mason et al. combined Synthetic Aperture Radar
(SAR) sensors and Light Detection Ranging (LiDAR) in order to generate map features that can be
compared to an electromagnetic scattering model. The image classification system was very successful
in differentiating flooded from non-flooded images [10]. Although very successful methodologies,
these image-processing methods require either the adaptation of devices such as CCTV equipment, or
access to high resolution remotely sensed data, which is in both instances potentially very expensive.

These three types of systems are challenged by either data availability or associated time and
expense. Existing rainfall forecasting models also, are challenged as alert systems because they lack the
geographical component. They may provide a way to determine the amount of rain during extreme
rainfall events, but they do not provide insight into the geographical area expected to be flooded. For
these reasons, we propose a system that couples a rainfall-runoff model with a flood map database.
Working in conjunction, these two systems can reduce computational time and provide an estimate of
flood locality, hence expediting the alert system process.

Initially, we take a 0.30-m horizontal resolution Digital Elevation Model (DEM) representation
of our area of study, Manhattan, and divide it into 140 sub-basins. For each sub-basin, we remove
all building structures so they do not interfere with either our elevation values or our rainfall-runoff

model computations. Then, starting at the lowest topographic value and with a step increment, we
generate several flood-level maps at each location assuming full routing of the runoff water. All the
maps are then assembled into a map database. Consequently, we introduce a rainfall-runoff model
that estimates the expected runoff volume at different times during any storm interval.
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The model works with the predicted rainfall intensity and duration of any given storm. It simulates
rainfall, infiltration, and inlet-flow processes. It also estimates the runoff volume at any time during
the storm time interval. With the known runoff volume, the system searches for the map that reflects
the flood area. This approach reduces computational time because the database already contains
thousands of maps that can reflect how each locality can be affected. If the predicted area is large,
authorities can determine whether or not to make changes to local traffic patterns for example. City
planners can also potentially benefit from knowing in advance what urban areas are more likely to
be flooded. Actions that improve runoff infiltration can be taken at these specific locations, hence
reducing the effects of urban flooding.

2. Materials and Methods

In this study, we take Manhattan Island, New York City (NYC) as our megacity area of study.
NYC is among the 10 most populated cities in the world [11]. With around 1,664,727 people living in
a 59.13 km2 area [12], Manhattan Island is considered to be the most densely populated city of the
United States and the world. It is important to note that this population density does not account for
the influx of people commuting into the island every day.

Often described as the cultural and financial capital of the world, Manhattan is host to the
United Nations Headquarters, the New York Stock Exchange, and the NASDAQ. Geographically, the
East, Harlem and Hudson rivers surround Manhattan, and the city is informally divided into Upper
Manhattan, Midtown, and Lower Manhattan. Manhattan averages an elevation of 9.1 m over sea level
with the highest point at 81 m, located in Upper Manhattan. The lowest point is located in Downtown
Manhattan at 1 m.Hydrology 2018, 5, x FOR PEER REVIEW  4 of 15 
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We base this work on the 140-stormwater sub-basins designed by the New York Environmental
Protection Agency (NYEPA) [13]. We use a DEM derived from the 2010 Light Detection and Ranging
(LiDAR) data at a 0.30-m horizontal resolution with a vertical RMSE between 9.5 cm and 33.08 cm [14].
Figure 1 shows the 140 sub-basins and population densities of each of the areas.

2.1. Flood Map Database

The database is a collection of flood maps for each one of the 140 sub-basins of our study area.
This map collection provides a geographical approximation of flooded areas at different rainfall
volumes. It also reduces computational time because most possible flooding scenarios have already
been pre-prepared.

In order to build this database, we acquired elevation, man-made structures (buildings, streets,
sidewalks), and land cover information from the NYC Open Data repository [14]. All data were
processed in ArcGIS 10.4 and Python to facilitate automation. We created separate elevation, structures
and land cover raster files for each of our sub-basins. In this manner, each sub-basin can be treated as a
sub-area of study.

The original DEM contains elevation values of all buildings and structures, but our hydrological
analysis is limited to that of the land surfaces other than buildings. Therefore, we subtracted the
building footprint for all 140 sub-basin DEM files. We also assumed that the rainwater on the rooftops
is collected through the building storm drainage and directly transferred to the stormwater system.
Figure 2 depicts a sub-basin DEM before and after building/structure subtraction.Hydrology 2018, 5, x FOR PEER REVIEW  5 of 15 
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Figure 2. Building outline removal process from DEM file for NYEPA Basin-96—(a) Original DEM
file with no extractions (b) Buildings/structures location within the basin (c) Resulting DEM file with
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We calculated the total sub-basin area Ai; the length of the streets LSi; the land cover types
(impervious AIi, bare soil Abi, and green areas Agi); and the lowest and highest topographical points
in each sub-basin. The approximate number of storm sewer inlets NCi was derived using Equation (1)
below, where S is the spacing between storm inlets in the catch basin and NB is the number of sub-basins
in the study area (NB = 140). It is important to note that for our particular area of study, S is based on
the NYEPA sewage layout, which includes one inlet at each corner of major intersections and equally
spaced inlets along streets. However, we used Equation (1) below to estimate the number of inlets in
the area. Then, all information for each sub-basin was transferred to an Excel file.

NCi =
LSi
S

, i = 1, 2, . . . .NB (1)

Starting at the lowest topographic points for each sub-basin DEM file (i), each elevation increment
(∆L) is considered a new flood level Li,j. For example, the lowest DEM topographic pixel point at
NYEPA Basin-96 is 2.12 m, this is, LowLi. At an interval ∆L = 15.25 cm, the next level, LowL2, is 2.27 m,
LowL3 is 2.42 m, and so on. We calculated flooding volumes (V) and the total flooded area for each flood
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level in a new map. In our example above, the total flooded area at LowLi = 68.5 m2, LowL2= 577 m2,
LowL3= 1,260 m2, etc. Equation (2) explains the computations in this process.

Vi, j =




Npi∑
m=1

(
Li, j − Plm

)
∗Apm i f Li, j > Plm

0 otherwise


, j = 1, 2, . . . n (2)

where Npi represents the number of pixels in the sub-basin, Plm is the pixel level, Apm the pixel area,
and Li, j = LowLi + j∆L, j = 1, 2 . . .n; where LowLi is the lowest topographic point at sub-basin i, Li, j.

The final database is then composed of a table of records containing descriptive information about
each sub-basin (permeable, not permeable, land cover, etc.), corresponding flood levels, flooded area,
runoff volume, and a resultant flood map. The flow chart in Figure 3 shows the complete process
implemented for building the database.
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2.2. Rainfall-runoffModel

The rainfall-runoff model presented here follows the concept of mass balance in a catchment area
and includes physical processes of rainfall, infiltration, and storm inlet flow. Here, this concept is
applied to each pixel of the DEM raster. The volume of rainfall received at each pixel within a time
period represents the inputs. The outflows are represented by infiltration and street inlet flows but
exclude evaporation. Input and outflows are subtracted to determine the remaining flooding volume
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at the end of the storm period. The total flooding volume for the area is the sum of the runoff volume
for all pixels.

The use of pixel-based mass balance allows for temporal and spatial rainfall intensity variations.
It also allows for infiltration differentiation according to land cover type. For pixels containing inlets,
we determined storm street inlet flow by incorporating Armal and Al-Suhili 2019 [15] proposed
methodology. This methodology accounts for inlet blockages and it is explained below. In addition, we
used Horton’s infiltration model to determine the time effect from initial infiltration until threshold rate.

The innovative approach presented here relies on the coupling of the model and the flood map
database. The flood maps are easily accessible throughout the storm event as well as during the
recession period. We implemented the following steps for the creation of model:

(1) For any expected rainfall event, the total period of storm T and its rainfall intensity (It) time
variation is shown on the storm hyetograph in Figure 4.Hydrology 2018, 5, x FOR PEER REVIEW  7 of 15 
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(2) The user selects time interval ∆T, which in turn selects the number of time steps NT and flood
maps as per Equation (3).

NT =
T

∆T
(3)

Maps are displayed for each time interval as shown in Equation (4).

tk = k∆T, k = 1, 2, . . . ..NT (4)

where tk represents time from the beginning of the storm event up to k intervals of ∆T.

The flooding event simulation can be extended to cover the storm recession period (i.e., the period
after the rainstorm ends, up to the time where the runoff water is fully drained by the storm sewer
network). In this case, Equation (4) is extended as follows:

tk = k∆T, k = 1, 2, . . . ..(NT + NR) (5)

where, NR is the number of time steps ∆T, for the recession period, i.e., after the rain stops, as selected
by the user.
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(3) The rainfall intensity during any period, tk to tk−1 is obtained by averaging the intensities at those
times. The following equation can be used for the rainfall intensity during the total time of the
storm event and recession period.

Rk =

 Itk+Itk−1
2 k = 1, 2, 3, . . . .NT

0 k > NT, and k < (NT + NR)

 (6)

where Rk is the average intensity over time (tk, tk-1).
(4) Using rainfall, infiltration and the storm inlet flow processes, runoff volume at any time tk is

estimated using the following equation:

Vk = Vk−1 + RkAi − In fk −Dkk = 1, 2, . . .NT (7)

where Vk, and Vk-1 are runoff volumes at time intervals tk and tk-1 respectively, Dk represents
the volume of water drained through the street inlets of the storm sewer system during time
interval ∆T, as per Liu et al. 2015 [16], and Infk represents the infiltrated volume during the time
interval as:

In fk = ∆T
(
Ab. fb + Ag. fg

)
(8)

where fb and fg are the average infiltration rates for bare soils and green areas.

The equation below is used for calculating the inlet flow as water intake rate:

Q = k.w.C
√

2gh (9)

In order to simulate inlet flow partial blockage, and its resulting backflow, we modified Equation (9)
into Equation (10) by introducing the β factor as proposed in Armal and Al-Suhili 2019 [15]. Here, β
fluctuates between −1 and 1 during the simulation time interval. 1 represents a full inlet, at full inlet
inflow capacity. A partial blockage results in a number between (1 and 0). 0 represents a full blockage,
and values between (−1 and 0) represent a partial backflow while a value of −1 represents full backflow.
A linear beta-time variation is assumed with negative trend (slope) and an initial value of 1, (i.e., beta
decreases from 1 to −1 with time). The slope value is first assigned according to the topography of the
area and the location of the inlet. We verified the assigned slope value using the head variation with
time in the pixels that include an inlet. We assumed that the inlet starts back flowing when there is an
increase on the head (flood depth) that is not related to the amount of rainfall.

Q = β k.w.C
√

2gh (10)

where Q is the inlet discharge flow m3s−1, w is the area of the inlet m2 C represents the orifice coefficient,
g is the gravitational acceleration, h is the allowed water storage head of an inlet, and k is orifice
obstruction coefficient to account for interception of outlet screen racks. With this equation, then we
can estimate the inlet volume D:

Dk = ∆T(Q)(NCi) (11)

(5) The simulation starts by setting the initial runoff volume, i.e., at t = 0, as V0 = 0. The system
proceeds to estimate Vk for different k-values. Then, at each appraised volume, the model calls
the map database and displays the map that closely matches the projected runoff volume.



Hydrology 2019, 6, 56 8 of 15

The rainfall-runoff model simulation process uses the above calculations at selected time intervals
during the storm. Infiltration rates are determined using Equation (12), Horton’s equation. The storm
sewer inlets are determined using Equation (10). The initial value of β is 1, and it is assumed to reduce
with time during the simulation period. A negative β value is adopted if the total storm interval lasts
long enough to produce backflow. The inlet flow head, h, is assumed to increase linearly with time.
Accuracy of the simulation is, of course, affected by time variations of these factors. The actual and the
simulated runoff depths are expected to have small differences, but they do not affect our objective of
pre-identifying flood areas. The expected damages and consequences of severe floods, i.e., 40 cm or
higher, will not be much affected by a few centimeters of flood depth.

3. Results

In this work, the sub-basin database and the rainfall-runoff model work together to reduce
computational time and provide a map of the flood area. The database informs the model about the
specific conditions (paved areas, permeable areas, land cover type, total area, etc.) of each sub-basin
and subsequently delivers the appropriate flood map of the area.

In the following pages, we assess the capability of the rainfall-runoff model to forecast flooding
areas in an extreme rainfall event. We evaluate the efficacy of the pre-prepared database in relation to
the rainfall-runoff model and its capability to select the best suitable flood map and last, we apply the
system functionality to a case study in the area.

3.1. Database

The full assembly of the database results in a set of tabulated information as shown in Table 1 and
a set of corresponding maps as shown in Figure 5.

Table 1. Tabulated information for each basin connected to a corresponding map.

Flooded
Volume m3 Roads Paved

Other
**

Bldg. Bare Grass/
Shrub

Tree
Canopy

Total ***
P.A.

Total
Area Population Basin ID

Level

2598 152 0 0 0 0 14.7 14.7 257,900 2263 Basin
53-n1

20,889 996 28 0 0 9.1 204 213 257,900 2263 Basin
53-n2

72,921 2525 378 0 0 27.4 1132 1159 257,900 2263 Basin
53-n3

209,073 5657 1460 156 0 75.9 3615 3691 257,900 2263 Basin
53-n4

427,873 8513 3843 302 0 243 8265 8526 257,900 2263 Basin
53-n5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basin
53-n...

* All units in m2 unless specified—** Buildings. *** Permeable Area.

Figure 5 below shows four levels corresponding to basin number 53 located on the lower East
side of Manhattan, each one of these maps corresponds to the first four rows of information in Table 1.
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Figure 6. Expected flooded area (EFA) for base level (Lowli) and subsequent ∆L = 15.25cm increments
Basin53—(a) Lowest topographic level—Lowl1 = 1.62 m, EFA = 500 m2; (b) Lowl2 = 1.77 m,
EFA = 3745 m2; (c) Lowl3 = 1.92 m, EFA = 12,228 m2; (d) Lowl4 = 2.08 m, EFA = 32,834 m2;
(e) Lowl5 = 2.23 m, EFA = 63,649 m2; (f) Lowl6 = 2.39 m, EFA = 102,251 m2.
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3.2. Case Study—Extreme Rainfall Event May 5, 2017

The May 05, 2017 storm and the corresponding flood that affected Manhattan Island, NY, is used
as a case study for the model. The estimated average intensity of the storm was 15.3 cm/hour. This
averaged intensity is distributed over a 15-min duration. The specific sub-basin location in Manhattan
is identified as Basin-96 in the NYEPA designation. The basin encompasses the area between 12th
Avenue in the West, 8th Avenue in the East, 23st in the South and 26st in the North. Figure 7 below
shows the total basin area.
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The basin total area is 244,713 m2, the pervious area is 15,623 m2, and the total street length is
5124 m. The soil type of this area indicates the following Horton’s infiltration parameters for the
application of time variant infiltration rate: fo = 0.1423 cm/min, ff = 0.0021 cm/min, and k = 0.07 1/min.

ft = f f +
(

f0 − f f
)
e−kt (12)

where ft(mm/h) is the infiltration rate at time t; f0(mm/h) is the initial infiltration capacity, ff(mm/h)
is the final infiltration (threshold value) capacity, k is the decay constant, and t is time. There are 34
estimated storm sewer inlets in the basin. The head of each inlet is assumed to be 0.05 m at the start of
the storm and increase at a linear rate to a threshold value of 0.1 m. The inlet flow was deduced using
the reduction factor β as mentioned above. With this information, the model application resulted in
the outputs shown in Table 2 below.

Table 2. Rainfall-runoff model results.

TIM *

Accumulated
Runoff

Volume at the
Beginning of
Interval—m3

Rainfall
Volume m3

During the
Interval

Infiltration
Rate cm/min
During the

Interval

Infiltrated
Volume m3

During the
Interval

Reduced
Factor
IDC **

Inlet
Head

Drained
Volume SSS

*** During the
Interval

Accumulated
Runoff

Volume at the
End of

Interval m3

0–5 0 3108 0.076 279.8 0.34 0.05 1717 1110
5–10 1110 3108 0.055 201.5 0.27 0.07 1673 2343

10–15 2343 3108 0.049 178.8 0.20 0.10 1428 3843

* TIM (Time interval in minutes), ** IDC (Inlet discharge coefficient), *** SSS (storm sewer system).

The model searches the database to find the closest flooding map that represents the actual runoff

volume. For our case study, Figure 8a. shows the map corresponding to the rainfall event. A picture of
the corner of 24th St and 12th Avenue (area within NYEPA Basin 96) shows actual flooding during
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the May 5th storm in Figure 8b. This area corresponds to the West Side Highway (12th Avenue), a
major transportation way in Manhattan. As reported by numerous media outlets [17,18] the heavy
downpour caused several road closures around the metropolitan area. The National Weather Service
reported closures between 20th and 30th streets on the West Side Highway at around 1:40 PM due to
flooding [19].
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Avenue and 24rd street (Carlo Allegri, Reuters).

The study case shows that the system can generate several flood level maps that are congruent
with actual flooding. The picture taken of the flooded area at the moment after the storm coincides
with the area assigned as flooded by the model. The case study also shows that the system is consistent
with mass conservation at reasonable computational time.

As the average intensity of the storm is an estimate, its value may impact the model’s precision.
Nevertheless, since our goal is to quickly determine the area that is most likely to be flooded, the
system rapidly computes volumes and chooses the corresponding flood map. Results for this case
study show that for a 15-min storm period, subdivided at 5-min intervals, the total computational time
is 3 min.

3.3. Parameter Sensitivity Analysis

Sensitivity analysis is useful for finding the percentage change variation in the estimated volume.
It helps us define the level of accuracy required for setting temporal and spatial variations of parameters
in the model. Specifically, to detect whether their variation is linear or non-linear and if these changes
are relatively high or low.

Table 3 below shows percentage reductions in runoff volume at the end of the storm due to
variations of different parameters.
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Table 3. Runoff volume reduction as percentages.

Inlet Head Effect Reference Value
Storm Inlet

Head-Time Variation
cm/Time Interval

Runoff Value Percent
Reduction—from

Reference

Runoff Value Percent
Reduction—from

Previous

0.01 0.01 0 0
0.015 3.47 3.47
0.02 6.76 3.41
0.025 9.91 3.37

Threshold
Infiltration Rate

Effect
Reference Value Threshold Infiltration

Rate

Runoff Value Percent
Reduction—from

Reference

Runoff Value Percent
Reduction—from

Previous

0.048 0.048 0 0
0.04 −0.76 −0.76
0.032 −1.46 −0.69
0.26 −1.98 −0.52

Number of Inlets
Effect Reference Value Number of Inlets

variation

Runoff Value Percent
Reduction—from

Reference

Runoff Value Percent
Reduction—from

Previous

34 34 0 0
32 −6.25 −6.25
30 −12.49 −5.88
28 −18.74 −5.55

Sewer Inlet Flow
Coefficient Effect Reference Value Variation Change Per

Time Interval

Runoff Value Percent
Reduction—from

Reference

Runoff Value Percent
Reduction—from

Previous

0.06 0.06 0 0
0.04 11.17 11.17
0.02 19.49 9.37

0 27.82 8.33

Parameter sensitivity analysis showed the following. With respect to the low head time variation
for the storm inlets, the change in head variation was set at 0.01 cm/min as reference value and time
interval was set at 5-min. We tried different variations at 0.015, 0.02 and 0.025 cm/min. Results showed
an approximate linear variation at a rate of approximately 3.4 percent increase. Regarding variation of
the threshold infiltration rate, the reference value was set to 0.048 cm/min and it was reduced to 0.04,
0.032 and 0.26 cm/min. The time interval was also set at 5-min. Results indicated a non-linear variation
of runoff flow with a small (0.76 to 0.52) percent increase. With respect to the effect of the number of
storm inlets, we used 34 as reference value and reduced it by 2 at each 5-min interval. We also observed
a non-linear variation in this parameter. The percentage increase in runoff flow ranged between 6.25%
and 5.55%. Finally, concerning the storm inlet flow reduction factor effect, time variation was found to
be non-linear with a range between 11.7 and 8.33. This indicates that variations of this parameter are
very sensitive and need further investigation for future applications.

4. Discussion

This paper introduces a coupled GIS-based model and map database that simultaneously works
to facilitate the urban flooding management process. The purpose of this coupling is so that potential
flooded geographically areas can be determined before the storm. Given the complexity of all model
types (physical, semi-physical, image processing, etc.), this approach was developed with some
simplified assumptions. Evaporation, for example, is not considered as a variable in the model since
its value during a storm event is not significant.

We underline that various assumptions and variations of the many parameters in the model will
affect accuracy. The accuracy of inundation depths in this model for example, relies solely on the
calculation of the rainfall amount, infiltration rate, and the storm inlet flow processes. In addition,
the extent of the flooded area is considered to decrease with distance from the maximum head or
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inundation depth. Nevertheless, we achieve our objective to present a system that can quickly simulate
flooded areas before the storm.

Our study case demonstrates that computational time is relatively short. The system took 3 min to
complete calculations for three time intervals of a 15-min storm. We also tried five different intervals,
at 3 min each, for a 15-min storm. The system completed all the calculations in 4 min. The interval time
and the processing time are not linearly correlated, but overall, compared to other available systems,
this model can be used as a quick reference.

4.1. Limitations

(1) Verification limitations: depth verification is not presented in this document and is needed for
future fine-tuning of the model. At this time, the model is devoted to finding areas prone to urban
flooding and their extent.

(2) Homogeneous rainfall: as spatial variations of rainfall must be considered, the system here
presented is completely reliant on the availability of detailed rainfall forecasts and rain gauges.

(3) Temporal rainfall distribution: the rainfall time-intensity variation is not considered, and
consistent average rainfall intensity is assumed during the storm time interval.

(4) Data limitations: the presented model is a data driven system that relies on the accuracy of
data inputs. In this case, we have used a 0.30 m resolution LiDAR DEM of NYC but other relevant
information such as land use and land cover types are not yet available at such resolution.

(5) Sub-basin-based inundation: in this study, flooding is calculated separately for each sub-basin.
Uneven or unrealistic flooding conditions may be encountered at each sub-basin boundary area.

(6) River flooding: based on the limitations and criteria that the system is built on, the system is
not appropriate to use for river flooding.

4.2. Future Directions

Validation with a future rainfall event needs to be studied to compare model results to real flood
depth spatial distribution. Furthermore, as sensitivity analysis demonstrates, the reduction factor
variation needs further analysis as it exhibited a high non-linear variability. As we fine-tune the system,
it will be extended to the other boroughs of New York City.

5. Conclusions

We propose an urban flash flood alert tool that couples a rainfall-runoff model with a flood-level
map database that expedites the alert system process. The pre-prepared flood maps database can be
used for a quick identification of the areas prone to flooding when coupled with the rainfall-runoff

model, with very short processing computer time compared to other models. Our approach presents
reasonable flooding results for the sake of quick preparedness. We expect that the resultant maps can
inform authorities and citizens about expected conditions in the streets and on the roads in the city as a
storm approaches. It is our hope that decisions, such as closing traffic in a particular area, can be aided
by this system.

The spatial flood depth distribution of the flooded area can be estimated at any time within the
storm interval using ArcGIS. Unfortunately, this flood runoff depth spatial distribution cannot be
verified due to the lack of spatial depth measurements during the storm event of the case study, and
hence left for future research. As for the current document, the objective is only to develop a model for
identifying areas prone to flooding and the extent of the flood regardless of the depth, i.e., any area
covered by residual water.

Sensitivity analysis of the model showed that the storm inlet flow parameter exhibits a linear
variation of (3.4%). The threshold infiltration rate, the number of storm inlets and the storm inlet
reduction factor showed a non-linear variation. However, the reduction factor variation showed a high
non-linear variation, as it is a very sensitive parameter. For this reason it is necessary to further research
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the effects of this factor in relation to the overall model. Perhaps in the future, with the acquisition of
real-time depth data from satellites, this factor can be calculated with more precision.

Lastly, in spite of the limitations posed by the rainfall spatial and temporal variations, the model
was developed in such a way that these variables could easily be included using GIS-Excel data files in
future work.
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